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Abstract 

The Left Ventricle (LV) can be considered to be a near-conical fibrous Flexible Matrix 

Composite (FMC) structure in which the myocardial fibers contract by a maximum of 15% in 

length while pumping to cause an approximately 50% overall volume contraction. The Pumping 

Potential (PP), defined as the relative volume reduction due to an input stroke, of a simple 

conical structure was estimated numerically to be approximately 1-2. However, the actual PP of 

the near-conical LV structure is in the range of 3.3-4. And the question crops up: what is the 

cause of such a high PP of the LV? To investigate this, the LV is modeled physically and using 

the finite element software ANSYS. The modeling is based on a recent concept of Helical 

Ventricular Myocardial Band (HVMB), according to which the heart is made of a single band 

called the HVMB, which twists and loops to form the heart. Multiple goat hearts are dissected 

and unfolded into the HVMB. The shape of the band as well as the crude fiber orientation in its 

outermost (epicardium) and innermost (endocardium) layers are observed. The trace of the band 

together with the two-layer fiber orientation is recorded, and a Matlab program is written to 

numerically twist and loop the band into a simple and practical near-conical two-layer LV-like 

FMC model. Polyurethane (Matrix material) and shape memory alloys (as actuating fibers) are 

used to physically construct the model. The experimental and analytical investigations yielded a 

reasonably high PP in the range of 2.5-2.8. Moreover, the twist phenomenon and wall thickening 

effects, which have been previously pointed out in literature to contribute to the high PP of the 

LV, were observed clearly in the simulations. 
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1. Introduction 

The Left Ventricle (LV) is the most essential pumping member of the heart. The LV can be 

considered to be a near-conical fibrous flexible matrix composite (FMC) structure [8]. An FMC 

comprises of fibers and a flexible matrix. Moreover, a single layer in a FMC is called a ‘lamina’ 

and a stack of laminas is called a ‘laminate.’ The LV may be assumed to be a multi-layer 

laminate structure and fall in a special category of ‘angle-ply’ laminate [10, 11, 12] which shows 

interesting properties of high Poisson’s ratio etc. In order to better understand the LV structure, a 

basic understanding of the composite materials is important.   

 

In the near-conical LV structure, the myocardial fibers contract by a maximum of 15% to 

engender an approximate overall 50% volume contraction [1, 2]. The Pumping Potential (PP), 

defined as “the relative volume reduction due to an input stroke” [11, 12], of a simple conical 

structure was estimated numerically to be approximately 1-2.  However, the actual PP of the LV 

is in the range of 3.3-4. And the question crops up: what is the cause of such a high PP of the 

LV? Our current research attempts to investigate the same using crude experimental and 

analytical modeling of the LV. 

 

In our current research, the heart modeling is based on a recent concept known as Helical 

Ventricular Myocardial Band (HVMB), according to which the heart is made of a single band 

called the HVMB, which twists and loops to form the ventricles. Multiple goat hearts are 

dissected to unravel the HVMB. From literature and dissection results, the HVMB shape and a 

crude fiber orientation across the top and bottom layers of the HVMB are recorded. A simple 
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two-layer left-ventricle-like FMC structure is modeled and its PP is investigated experimentally 

and analytically. 

 

A brief overview of the heart and composite materials is presented in Chapter 1. A 

comprehensive literature review of the LV structure, the HVMB, our previous work on single-

layer FMC LV-like structure, some high PP structures and cardiac modeling techniques are 

presented in Chapter 2. The key objectives of our research and our preliminary work are 

discussed in Chapters 3 and 4 respectively. Chapter 5 discusses the experimental and analytical 

work, followed by the results of the PP of the two-layer LV-like FMC structure in Chapter 6. 

Chapter 7 presents the conclusions. 

 

1.1 The Heart 

The heart pumps out approximately 4.7-5.7 liters of blood in every beat/cycle [3]. The heart is 

confined in a pericardial sac [3] and is made of three main layers of fibers. The outer most fiber 

layer is called the ‘Epicardium,’ the middle (actuating) layer the ‘Myocardium’ and the inner 

most layer the ‘Endocardium.’  

 

The heart structure comprises of four main parts [3] namely the ‘Right ventricle’, ‘Left 

ventricle,’ ‘Right atrium’ and ‘Left atrium’ (Figure 1). Two large veins, namely the ‘Superior 

vena cava’ and the ‘Inferior vena cava,’ carry blood out and into the heart respectively (Figure 

1). Two valves, namely the ‘Mitral valve’ and the ‘Tricuspid valve’ do not allow the reverse flow 

of blood from the ventricles to the atriums (Figure 1). Two more valves, namely the ‘Pulmonary 

valve’ and ‘Aortic valve,’ prevent the reverse flow of blood from the arteries to the ventricles. 
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Figure 1: Various components of the human heart [4] 

 

1.2 Composite Materials 

A composite material is made by combining two or more materials with distinct physical or 

chemical properties. Its characteristics are completely different from the individual materials 

which are combined to make it. In a composite, the individual materials retain their characteristic 

physical, chemical and mechanical properties. The two constituents of a composite material are 

‘fibers’ and the ‘matrix.’ Moreover a single layer in a composite is called a ‘lamina,’ and a stack 

of laminas is called a ‘laminate’. 

 

The fibers are responsible for providing the strength and stiffness to a composite material. The 

fibers can be broadly classified as continuous (Figure 2(a)) and discontinuous fibers (Figure 

2(b)).  
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(a)                                                        (b) 

Figure 2: Fiber classification: (a) Continuous fibers and (b) Discontinuous fibers. Reproduced 

from [5] 

 

The matrix material in a composite holds the fibers in place and gives a shape to the composite.  

In a composite under loading, the matrix shares and also transfers the load to the fibers. The 

matrix can be either a polymer, metal, or ceramic. A polymer has a low strength and stiffness. 

An ‘elastomer/rubber’ is a type of polymer with high elasticity, which may stretch more than 

twice its original length. A common example of elastomer is ‘polyurethane (PU).’ It has a good 

tear strength, low water absorption and high biocompatibility [6]. For our current research work, 

PU has been used as the matrix material for construction of the LV-like Flexible Matrix 

Composite (FMC) structure. 

 

A single layer of composite material is called ‘lamina.’ A lamina comprises of a set of fibers 

placed in a single direction within a matrix material, and is typically orthotropic in nature. In a 

lamina under loading, the fibers carry the longitudinal and compressive loads, while the matrix 

distributes the loads among the fibers and also prevents the lamina from buckling under 

compressive loading. An arrangement of multiple laminas, stacked at different angles, is called a 
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‘laminate.’ Figure 3 shows a couple of composite laminas with different fiber orientations 

stacked together to form a composite laminate structure. 

 

 

Figure 3: Typical laminate structure: A stack of laminas. Reproduced from [7]  

 

Angle-ply is a special case of laminate in which for every ϴ-ply, there is a negative ϴ-ply. An 

example is [ϴ1, ϴ2, -ϴ2, ϴ3, -ϴ3, -ϴ1]. Furthermore angle-ply laminates can be of two types 

namely ‘symmetric angle-ply’ and ‘asymmetric angle-ply.’ In a symmetric angle-ply laminate, 

the laminas are arranged as mirror image from middle surface. An example is: [ϴ1, ϴ2, ϴ3, ϴ3, 

ϴ2, ϴ1] as shown in Figure 4. In an asymmetric angle-ply laminate, the laminas are arranged as 

negative mirror image from the middle surface. An example is: [ϴ1, ϴ2, ϴ3, -ϴ3, -ϴ2, -ϴ1] as 

shown in Figure 5.  

 

In our current research, the LV structure has been assumed to be an asymmetric angle-ply 

laminate with two or three fiber layers everywhere. These fiber layers will be revisited later in 

the upcoming sections. 

 

 A Single Lamina 
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    Figure 4: Symmetric Angle-Ply Laminate.            Figure 5: Asymmetric Angle-Ply Laminate. 

 

2. Literature Review 

The Left Ventricle (LV) is the most essential part of the heart. The LV structure can be 

considered to be a Flexible Matrix Composite (FMC) structure [8] with embedded myocardial 

fibers, arranged in an overlapping helical fashion. Numerous dissection and histological 

techniques have been employed in the past to explain the LV anatomy. One of the most 

successful attempts of unraveling the LV anatomy was by Torrent Guasp, a Spanish scientist 

who spent almost his entire life in this painstaking research on dissecting the heart. He proposed 

that the heart is made of a single band known as the Helical Ventricular Myocardial Band 

(HVMB), which twists and loops to form the heart.  

 

Recent advancement in imaging techniques has enabled researchers to study the heart in detail, 

and also model it. Cardiac modeling has been used so far mainly to study heart anatomy, 
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pumping mechanisms, and also to model diseased hearts. However, minimal effort has gone into 

the study of the effect of fiber orientation of the heart on its pumping action. Recently, the fiber 

orientation of the HVMB was studied by Ghoneim and Arnab [9], and a LV-like FMC structure 

was modeled using the simplest crude fiber orientation observed in the HVMB endocardium. 

The Pumping Potential (PP) of the simple single-layer-LV-like FMC structure was investigated 

both experimentally and analytically. The experimental and analytical PP observed were 1.67 

and 1.9 respectively. Though a reasonably high number, the resulting PP is much lower than that 

of the human heart, which is approximately 3.3-4 [1, 2]. Previously, Ghoneim, based on an idea 

proposed by Lawrie [10], that an asymmetric angle-ply FMC structure can produce pumping 

with a very high PP, investigated two asymmetric angle-ply FMC structures [11, 12], which 

yielded high PP values. The LV structure can be assumed to be an asymmetric angle-ply FMC 

structure. In our current research, the effect of the simplest, practical and most accurate fiber 

orientation in the two predominant layers, namely the epicardium (topmost) and the endocardium 

(bottommost) of the LV, on its PP is investigated both experimentally and analytically. 

 

A comprehensive overview of the LV structure is presented in Section 2.1 and the recent Helical 

Ventricular Myocardial Band (HVMB) concept is presented in Section 2.2. Some angle-ply FMC 

structures with high PP, investigated by Ghoneim et al. are presented in Section 2.3. Our 

preliminary work on the single-layer LV-like FMC structure has been discussed in Section 2.4. 

Section 2.5 presents a brief but up-to-date literature on the cardiac modeling. 
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2.1 Left Ventricle (LV) Structure 

The LV structure was a mystery for a long time. In 1628, Harvey for the first time pointed out to 

the possible functional significance of the myocardial (actuating muscular layer which causes 

pumping action in heart) fiber orientation in the LV [13]. Stensen, 1664 [15], Lower, 1669 [16], 

Senec, 1749 [17], MacCallumetal [19] and Mall, 1911 [20] found that the LV structure can be 

considered to be made of three main fiber layers, in which the inner and outer fibers are helical 

and the middle layer is mainly circumferential. Ludwig [18], later in the nineteenth century, 

observed the LV can be considered to be an approximate asymmetric angle-ply structure, with 

the epicardial (outermost layer) fibers crossing the endocardial (innermost layer) fibers at 

approximately right angles. 

 

In 1961, Streeter et al. [21] dissected a dog’s heart and reported the various myocardial fiber 

orientations observed going from the endocardium to the epicardium. In Figure 6, the three-

dimensional segment of the LV wall illustrates mean myocardial fiber orientation. The apex-base 

direction is vertical, and the horizontal edges of the block are parallel to the circumferential 

plane, as shown in the Figure 6. Streeter et al. [21] observed that the LV myocardial fibers 

halfway between the endocardium and epicardium are circumferential, at a fiber angle of 0° 

(Figure 6, 7). The fibers at the endocardial and epicardial surface were found to overlap at a 120° 

angle and form opposite 60° angles with circumferential myocardial fibers. Also, the fiber angles 

were observed to vary gradually between these extremes. Figure 7 presents a plot showing the 

relation observed by Streeter et al. [21] between the LV wall thickness and the myocardial fiber 

angle distribution going from the endocardium (minimum wall thickness) to the epicardium 
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(maximum wall thickness), during systole and diastole respectively. The fiber angle 

distributions, as can be observed in Figure 7, change minimally from systole to diastole.  

 

                 

   Figure 6: 3-Dimensional section of dog’s LV wall               Figure 7: LV wall thickness versus 

myocardium showing the 10 layer fiber arrangement [21]            fiber angle distribution [21] 

 

      
  Figure 8: Orientation employed for block          Figure 9: Fiber orientation at the crux and apex 

removed from serial section, in Histology [22]                    of a left ventricle wall [22] 

Circumferential plane 

Apex 

Base 

Endocardium 

Epicardium 
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In 1981, Greenbaum et al. [22] studied the fiber orientation in the LV of the human heart, via 

dissection and histology (Study of cells and tissue structures at a microscopic level). He observed 

that the LV structure is an approximate asymmetric angle-ply structure (Figure 8). He also 

pointed out the approximate fiber orientations near the base, apex and in the middle, on the septal 

side of the LV (Figure 9).   

 

Until the late 1980’s, the LV was considered to be made of a homogeneous material, and all the 

myocardial fibers were assumed to contract together simultaneously, while the heart (or the LV) 

pumps. These facts were used in modeling of the LV, and were supported by various two-

dimensional imaging techniques, such as echocardiography and angiography. However recently, 

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) [24] and Echocardiography have 

enabled researchers to understand the highly anisotropic structure of the LV, the multi-step 

myocardial contraction/activation schemes, ventricular twisting [23], and many other important 

phenomena in the heart. These findings have significantly helped to improve the cardiac 

modeling techniques. 

 

Recently, the Helical Ventricular Myocardial Band (HVMB) model [14] has defined a new 

approach towards an understanding of heart anatomy. According to the model, the heart is made 

of a single band of muscle fibers, which twists and loops to form the two ventricles. This novel 

concept has been used as the modeling hypothesis in our current research. The HVMB model is 

discussed in detail in Section 2.2. 
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The University of Auckland group [8] studied the LV at the microscopic level and proposed that 

the LV structure can be considered to be made of a fibrous Flexible Matrix Composite (FMC) 

material, with myocardial fibers arranged in different laminas/sheets, separated by a collagen 

matrix material (Figure 10).  

 

 
Figure 10: University of Auckland ‘laminar sheet’ model [8]  

 

2.2 Helical Ventricular Myocardial Band (HVMB)  

Dr. Torrent-Guasp in 2005 [14] proposed the Helical Ventricular Myocardial Band (HVMB) 

concept, as a result of his 25 years of research, aimed at the dissection of the heart into a single 

fibrous band, which can twist and loop to form the heart. The credibility of his research lies in 

the dissection of more than a thousand hearts of different species (including mammalian hearts, 

human hearts, fish hearts and reptile hearts) [25]. The major dissection steps followed by Dr. 

Torrent-Guasp are shown in Figure 11. The more detailed dissection steps are discussed in 

Figure 12. 
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Figure 11: Major dissection steps: The Helical Ventricular Myocardial Band (HVMB) [14] 

 

 
 

Figure 12: Detailed HVMB dissection steps [14] 

 

Left Ventricle  
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The first step before dissection is to boil the heart in water for about an hour to loosen the 

connective tissues [14]. The next step is to remove all the unnecessary fat from the epicardial 

(outer) surface. The pulmonary artery and aorta are separated (Figure 12 A). At the anterior 

interventricular sulcus (Figure 12 A, magnified image in Figure 13 A), some bridging superficial 

fibers (also called aberrant fibers) are cut through, and the right ventricular (RV) free wall is 

moved aside (Figure 12 B). The ending edge of the RV free wall is called the ‘Posterior 

interventricular sulcus.’ To move further in dissection, the RV free wall is pushed laterally, 

followed by cutting through fibrous trigons. In this way, the basal loop is unfolded (Figure 12 E). 

 

Looking from the RV side, the apical loop comprises of two clearly distinguishable fiber layers 

(Figure 13 B), namely a deeper layer (descendent section (DS)) and a more superficial layer 

(ascendant section (AS)). These fiber layers cross each other at approximately right-angles 

forming the septum (a thin membrane which separates the LV and RV cavities) as shown in 

Figures 12 (K), 13 (B) and 14. To continue with dissection, the posterior interventricular sulcus 

is revisited. The aorta is separated from the LV by cutting though the fibrous trigons attaching 

them. The separated AS (ending at the aorta) is un-looped all the way followed by the unlooping 

of the DS, to unravel the full HVMB. The flat un-looped HVMB is shown in Figure 15.  
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.                      

 

Figure 13: (A) Anterior interventricular sulcus (AIS): Double headed arrows show the bridging 

aberrant fibers. Single headed arrows show the two actual fiber directions separated by the AIS. 

(B) Interventricular septum with the ascendant fibers (AS, 1) fibers crossing the descendant 

fibers (DS, 2) at right angles, observed from the RV side. Reproduced from [14] 

 

          
Figure 14: Microscopic view of the top of septum, showing the two distinct fiber groups, namely 

AS and DS. Reproduced from [14] 

 

 

(A) (B) 
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Figure 15: Different sections of the flat HVMB band. [14] 

 

The HVMB is divided in two main sections, namely the basal loop (from pulmonary artery to 

central 180
o
 fold) and the apical loop (from central 180

o
 fold to the aorta) [14] (Figure 15). Both 

of these loops are further subdivided into two sections respectively (Figure 15). The basal loop is 

divided into the Right Section (RS) and the Left section (LS), separated by the posterior 

interventricular sulcus. The apical loop is divided in the descending section (DS) and the 

ascending section (AS), separated by the anterior papillary muscle.  

 

The RS in the HVMB forms the RV and the LS, DS and AS together forms the LV. Moreover, 

the HVMB twists and loops one half turn to form the RV and a one-and a-half turn more to form 

the LV.  

 

HVMB dissection has been recently performed to study the interventricular septum (IS) structure 

[14]. It has been found that the IS belongs to both the Left and the Right ventricles. The IS 

comprises of AS and DS fibers from the LV side and recurrent fibers from the RV side. Figure 

16 (A) shows the various fiber groups (i.e. AS, DS etc.) forming the LV, RV and IS respectively. 

Pulmonary Artery 

Aorta 
Posterior Interventricular Sulcus 

Anterior Papillary Muscles 

Central Fold 
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Figure 16 (B) emphasizes the three major fiber groups participating in the IS formation. These 

three layers have also been recorded through our dissection of goat hearts.  

 

 

                   
Figure 16: (A) The various fiber groups forming the heart structure at different regions. (B) 

Three main fiber layers forming the interventricular septum. [14] 

 

2.3 High Pumping Potential Structures 

Lawrie et al. [10] proposed a novel idea that an asymmetric angle-ply FMC structure can be used 

to produce pumping with a very high PP. Based on this idea, the PP of a cylindrical pump by 

Lawrie [10] and a novel actuator by Shan et al. [26] were investigated. Ghoneim et al. extended 

Lawrie’s work to investigate two asymmetric angle-ply FMC structures under axial loading, 

namely a barrel shaped [11] and hyperbolic [12] structure. The schematic of these two FMC 

structures, investigated by Ghoneim et al. are shown in Figure 17 (A, B). In both of these 

structures, carbon fibers were wound in two layers, wetted by polyurethane resin (Adiprene 

KX208, from ChemPoint), to form a [f] angle-ply FMC laminate. The snapshots of these two 

structures are shown in Figure 18 (A, B). The PP of these structures is listed in Table 1. 

 

 

(A) (B) 
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                                                        (A)                                                                   (B) 

Figure 17: Schematic of the asymmetric angle-ply FMC structures investigated by Ghoneim et 

al. (A) Barrel-shaped [11] and (B) Hyperbolic [12] 

 

                   

                          (A)                                                                    (B) 

Figure 18: Snapshots of asymmetric angle-ply FMC structures investigated by Ghoneim et al. 

(A) Barrel-shaped [11] and (B) Hyperbolic [12] 
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Another idea was also investigated by Ghoneim [27], which is based on torsional loading of a 

hyperbolic single-ply FMC structure. The schematic of the hyperbolic single-ply FMC structure, 

with rigid fibers and very low matrix stiffness, is presented in Figure 19. Upon twisting the 

structure by an angle,, the length decreased from L0 to L1 and the throat diameter decreased 

from D0 to D1 respectively thus producing a reasonable volume contraction (pumping action).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Schematic of volume reduction (pumping action) in a single-ply hyperbolical 

FMC structure upon twisting [27] 

 

The PP of the different pumping structures, in the literature, is displayed in Table 1. Though the 

PP of the simple single-layer near-conical LV-like structure (discussed in Section 2.4) is 

relatively high compared to the cylinder-piston classical pumping structure, it is still well below 

that of the heart. 
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Structure PP 

Cylinder-Piston 1.00 

Single-layer LV-like FMC structure 1.67 -1.88 

Hyperbolic 2.59 

Heart [1, 2] 3.3- 4.0 

Barrel Shaped 10.33 

Table 1: Pumping Potential of FMC structures 

 

2.4 Single-Layer-Left-Ventricle-Like FMC Structure  

A near-conical single-layer LV-like FMC structure [9] was modeled, and investigated 

experimentally and analytically (using finite element software ANSYS). The modeling was 

based on the HVMB concept discussed in Section 2.2. Multiple goat hearts were dissected and 

unfolded into the HVMB. The shape of the band was observed. An idealized fiber orientation 

was assumed to run along the longitudinal axis of the band (principal fiber direction). The trace 

of the relevant portion of the band comprising the LV and the assumed fiber orientation was 

recorded, and a Matlab program was written to numerically twist and loop the band into a near-

conical LV-like structure (Figure 20).   

 

    
(A)                                                  (B)                                       (C) 

 

Figure 20: (A) Part of the HVMB band constituing the LV structure. (B) The LV band and crude 

single-layer fiber orientation plotted in Matlab. (C) Rolled near-conical LV-like structure with 

rolled fibers, plotted in Matlab. [9] 
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A closer look at the generated near-conical LV-like structure is presented in Figure 21. It is 

noticed that there are two unique sides of the structure:  

1. A descending/ascending side, which is made of two overlapped layers. The fiber 

orientations of the two layers are different. The two layers constitute an angle-ply 

laminate. 

2. An ascending side, which is constituted of a single layer and has a predominantly 

circumferential fiber orientation.  

 

    

 

         Figure 21: A closer look at the near-conical    Figure 22: Laminar structure of the heart [14] 

                                LV-like structure    

 

It should be pointed out that, despite the idealized fiber orientation adopted (Figure 21), the 

engendered 3D fiber orientation (Figure 22) captures some of the main features of the heart’s LV 

muscle fibers orientation. The two clear ones are [14]: 

Descending/Ascending side 

Ascending side 
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1. Two crossed fiber populations exist in one portion of the ventricle wall as shown in 

Figure 22 (descending/ascending). 

2. The populations of the fibers consist of a continuous and helical structure. 

 

These structural observations significantly affect the pumping action of the LV-like structure, 

which has been emphasised previously in Section 2.3, discussing high PP structures. 

 

For the experimental investigation, FMC was used to model the heart muscle. Polyurethane (PU) 

was employed for the matrix and shape memory alloy (SMA) fibers were used as actuating 

muscle fibers. The LV-like prototype was produced in three steps: (Figure 24 (a, b)) 

1. The band was produced using the open mold method, where SMA fibers were placed 

according to the idealized fiber orientation of the goat’s heart (Figure 23 A).  

2. The band was twisted and looped to form the conical LV-like FMC structure.  

3. The base of the conical structure was immersed into a bath of polyurethane to form a 

polyurethane base (Figure 23 B).  

 

             
 

Figure 23 (A): The idealized PU/SMA flexible-matrix   Figure 23 (B): The final conical LV-like  

                             composite band [9]                                                   structure [9]                           
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The SMA fibers of the prototype model of the LV-like structure were connected to a power 

supply, and the apex of the conical structure was shoved with a tube extended out from the apex, 

as shown in Figure 25. The structure was filled with water, and the SMA fibers were charged. As 

the fibers were activated and heated up, the structure was partially collapsed, pumping out water 

along the extended tube. 

 

 

(a)                                                   (b)                                     (c) 

Figure 24: Figure showing the two phase construction of the LV like structure followed by the 

experimental setup (c). (a) PU/SMA band in a Teflon mold cut in shape of LV band (b) Rolled 

PU/SMA band 

 

To estimate the PP of the near-conical LV-like FMC structure, the SMA was charged with the 

maximum amount of power allowed, which generates the highest strain (L//L0) in the SMA 

without destroying the shape memory of the wires. The volume of the displaced water (V) in 

the extended tube was measured, and the PP of the LV-like FMC structure was computed. The 

results are presented in Table 2. 
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Parameter Experimental ANSYS 

V 2.5 cm
3 

3.55 cm
3 

V0 50 cm
3 

37.73 cm
3 

L/L0 3% 5% 

 PP 1.67 1.88 

Table 2: Pumping potential of single-layer LV-like FMC structure 

 

 

Figure 25: The experimental set-up 

 

The analytical investigation was conducted using ANSYS software. The finite element mesh is 

displayed in Figure 26. The PU matrix was modeled with Solid 186, and the fibers were modeled 

with Beam 189 elements. The base was held fixed in all DOF and the model was excited with a 

5% thermal strain along the fibers. The material properties used in the analysis are given in Table 

3. Large deformation analysis was invoked. The experimental and analytical investigation 

yielded a PP of 1.67 and 1.9 respectively.  
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Material Property Value Unit 

SMA 
Modulus of Elasticity  133 GPA 

Poisson’s ratio 0.33  

PU Modulus of Elasticity 20 MPA 

Poisson’s ratio 0.48  

Core Modulus of Elasticity 1 KPA 

Poisson’s ratio 0  

Table 3: Material properties of SMA, PU and core material 

 

                       
 

Figure 26: The finite element mesh of the PU matrix (left) and SMA fibers (right). [9] 

 

2.5 Cardiac Modeling 

Cardiac modeling helps in understanding the function of the heart, disease propagation in the 

heart and also cardiac treatment. Typically, Diffusion Magnetic Resonance imaging (DT-MRI) 

technique or other suitable imaging techniques are used to obtain three-dimensional live images 

of the heart structure, fibers and different heart components like the ventricles. Subsequently, 
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these images are converted to appropriate numerical models through various volume and curve 

fitting post-processing techniques. 

 

The Auckland Bioengineering group in 1991, for the first time, developed a 3D finite element 

model [28] of the ventricular geometry (Figure 27) and the associated muscle fiber orientation. 

The geometry and fiber orientation information was obtained through two-dimensional imaging 

of a beating canine heart. The fiber orientation observed in the epicardium (Figure 28 A) and 

endocardium (Figure 28 B) formed an approximate asymmetric angle-ply orientation [28]. 

 

          

Figure 27: Auckland heart model Geometry    Figure 28: Auckland heart model fiber orientation    

Reproduced from [8]                                             in Epicardium (A) and Endocardium (B) [28] 

 

Dorri et al. [29] in 2004 designed a finite element model to simulate LV pumping and to study 

the effect of localized tissue/fiber deaths. The first step followed was to define the geometry of 

the human heart (Figure 29 A). The epicardial and endocardial surfaces were constructed from 

the various key points obtained from a human post mortem heart. To obtain the fiber points, a 

method called SPOT (Fiber Strand Peel-Off Technique) was employed. The fiber points for each 
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fiber were connected using splines (Figure 29 B). FMC was used to model the LV (Figure 29 C). 

Figure 29 (D) shows the post-processing result of LV deformation due to systole.  

 

 

(A)                                  (B)                                  (C)                                  (D) 

Figure 29: (A) Heart geometry. (B) Fiber spline plotting. (C) Meshing (D) Systole deformation 

simulation. Reproduced from [29]  

 

In 2006, Sermesant [30] designed an electromechanical finite element model to simulate the 

heart functioning. The geometrical modeling and fiber distribution (Figure 30 A, B) were based 

on interpolation data from USCD [31] and DT-MRI imaging. Moreover, three major fiber groups 

were identified as shown in Figure 30 (A, B). The blue and red colors represent the fibers 

crossing at opposite angles (+/- θ) and the yellow color represents the horizontal 

(circumferential) fibers. 
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                                    (A)                                                                           (B)         

Figure 30: (A) Fiber orientation from USCD [31]. (B) Fiber Orientation from DT-MRI 

 

In 2008, Wang et al [32] conducted a multi-scale analysis of the cardiac structure. DT-MRI 

imaging of a rat’s heart was used to obtain the heart geometry and fiber orientation. The 

approximate relative fiber angles of the endocardial, myocardial (Mid) and epicardial layers were 

identified in the rat’s heart DT-MRI images, which are presented in different colors in Figure 31. 

 

 

Figure 31: DT-MRI images of a rat’s heart and the three main fiber orientations [32] 

 

In 2011, Goktepe et al. [33] designed a finite element (FE) based biventricular heart model 

(Figure 32). The material properties were based on experimental data from 6 pig hearts [35] and 
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the myocardial fiber distribution was similar to that in a human heart, obtained using DT-MRI 

imaging. 

 

 

Figure 32: FE biventricular heart model by Goktepe et al [31] 

 

                   
                                   (A)                                                                      (B) 

Figure 33: John Hopkins University canine FE model [36]. (A) Model geometry (B) Fiber 

structure  

 

Recently in 2012, the computational cardiology lab at John Hopkins University developed a 

canine heart FE model (Figure 33) [36] to investigate the various mechanisms of heart disease. 
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DT-MRI imaging was used to construct the geometry and fibers. Moreover, the fibers were 

categorized into three main groups, namely the circumferential middle layer and vertical outer 

and inner layers with opposite angles [+/-θ], as shown in Figure 33 (B).  

 

In our current research, the LV has been modeled based on the HVMB hypothesis discussed 

previously in Section 2.2. The geometry and two-layer fiber orientation adopted is simple, 

practical (with our current facilities) and supported by literature and dissection results. Moreover, 

unlike the various cardiac models in literature with a huge number of fibers, the number of fibers 

considered in our model is very small, to ensure simplicity and practicality of modeling.  

 

2.6 Summary 

The LV structure can be considered to be made of a Flexible Matrix Composite (FMC) material 

[8], with myocardial fibers embedded in a helically overlapping fashion [15, 16], in 

approximately three distinguishable layers, identified through dissection and histological 

techniques [17, 18, 21] (Figure 7) and via various imaging techniques [28, 30, 31, 32, 36] 

(Figures 30, 31 and 33). The inner (endocardium) and outer (epicardium) layers cross each other 

at opposite angles (+θ/- θ), and the middle layer is mainly circumferential [14, 21, 22, 28, 30, 31, 

32, 36] (Figures 7, 8, 16, 28, 31, 33), forming an approximate asymmetric angle-ply laminate 

structure.  

 

The fiber orientation significantly affects the Pumping Potential (PP) of angle-ply flexible matrix 

composite structures [10, 11, 12, 26, 27]. The LV (or the heart), which is a natural pump in our 

body, shows a PP of 3.3-4. In an attempt to shed some light on the effect of fiber orientation of 
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the LV on its PP, a simple and practical single-layer near-conical LV-like structure was modeled, 

and its PP was investigated experimentally and analytically. The modeling was based on the 

HVMB hypothesis, which states that the heart is made of a single band, which twists and loops 

to form the two ventricles. The single-layer near-conical LV-like structure yielded a PP of 1.67 

experimentally and 1.9 analytically, which, though a reasonable value, is much less than the PP 

of the heart.  

 

3. Objectives 

The primary objective of our current research is to study the effect of a two-layer fiber 

orientation on the Pumping Potential (PP) of the LV. Previously a single-layer near-conical FMC 

model of the LV was investigated, yielding an experimental and analytic PP of 1.67 and 1.9 

respectively. Though a reasonable value, the PP of the single-layer near-conical FMC model is 

much less than the PP of the heart (or LV) which is 3.3-4. Consequently, we look at the effect of 

a more practical two-layer fiber orientation on the PP of the near-conical LV-like model. The PP 

of the near-conical two-layer LV-like FMC structure is investigated both experimentally and 

analytically.  

 

4. Preliminary Work 

A near-conical two-layer LV-like FMC structure is modeled to mimic the LV structure, and its 

Pumping Potential (PP) is investigated both numerically (ANSYS modeling) and experimentally. 

For both investigations, the modeling is based on the HVMB hypothesis (previously discussed in 

Section 2.2); that is, the heart is a made of a single band that twists and loops to form the 

ventricles. Consequently, we start with presenting the idealized band, the selection of the two-
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layer fiber orientation, and the construction of the approximate near-conical shape of the LV. 

Then, we present the experimental and the finite element (ANSYS) work in Chapter 5. 

 

4.1 Idealizing of Band Trace  

Multiple goat hearts are dissected and unwrapped into HVMB, following the various dissection 

steps highlighted in the Section 2.2. Figure 34 display the endocardium (innermost layer), of one 

sample of the HVMB. The shape of the band (red line in Figure 34) is recorded and traced on a 

sheet of paper (Figure 36). Since we are only studying the LV, the RS (Right Section) of the 

basal loop, which forms the free wall of RV, is discarded. In addition, the LS (Left Section) is 

also ignored for the following reasons: 

1. In the highly flexible LV structure, the LS is difficult to mimic using our Polyurethane 

(PU) band, because the PU is not as flexible and compliant as the heart muscle.  

2. The LS is a small section adjacent the base of the LV, which is constrained in both our 

experimental and analytical models, and is consequently assumed to have a very small effect on 

the pumping action of the LV.  

 
Figure 34: One sample of goat heart HVMB: Endocardium. The approximate LV band is traced 

using red line 

AS 

DS 

LS 

RS 
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The trace of the LV band is idealized (Appendix A) in order to engender a near-conical shape 

upon rolling and twisting. This idealization is accompanied by trimming the trace of the LV band 

into a circular sector with two radii. The schematic of creation of a conical structure from a 

simple circular paper sector (band) with two radii is shown in Figure 35. The red line (top edge) 

and the blue line (bottom edge) of the paper band form the base and the apex of the cone 

respectively. The crude LV band trace with the top edge (red line) and bottom edge (blue line) is 

shown in Figure 36. The idealized LV band is shown in Figure 37. The red stars are the band 

coordinate points recorded for using in analytical modeling of the LV band later.  

 
 

Figure 35: Sheet to cone formation. Red line and blue line represents the base and apex of the 

cone respectively. [38] 

 

 
Figure 36: Crude LV band trace with top edge (red) and bottom edge (blue) 
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Figure 37: Idealized LV band trace. Red stars are band key-points recorded in polar coordinates 

O 
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4.2 The Two-Layer Fiber Orientation  

Our aim is to obtain the simplest and most practical fiber orientation in the LV, and to observe its 

effect on the PP of the twisted and looped near-conical LV-like structure. An analysis is 

conducted to see the effect of the fiber orientation of a simple asymmetric angle-ply conical 

structure on its PP. We assumed a cone of radius r and apex angle α, and found the volume 

change, V, due to a change of the length of two input characteristic lines on the cone’s surface, 

which makes an angle  and -  respectively with the slant height, s (Figure 38). The overall 

rotation was considered to be zero degrees due to the asymmetric angle-ply orientation adopted. 

 

 

        Figure 38: Parameters of the conical surface [9] 

 

The volume, V, of the cone is 

2222 rsr
3

1
hr

3

1
)s,r(V 

               (Equation 1) 

 

 

Where, r is the radius, h is the height and s is the slant height. Differentiating with respect to the 

two variable r and s, we get 

r 
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Upon dividing by the volume (Equation 1), we get the expression for the volume reduction ratio:    
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    (Equation 2) 

 

 

Introducing the following normal components of the strain:  The tangential strain θ = r/r, the 

slant strain (along s) s = s/s, the fiber’s strain (along the characteristic length) l = L/L, and 

m normal to the characteristic line and along the surface of the cone. L is the length of the 

characteristic line. Applying the standard strain transformation, we have, 
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where m = cos, n = sin, and s and lm are the corresponding shear strain components. We 

assumed that the Poisson’s effect is negligible, then when l is imposed, we may impose m = lm 

= 0. Consequently, from (Equation 3): 
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Substituting into (Equation 2), after some manipulation: 
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Figure 39: PP of the conical structure 

 

The graph in Figure 39 displays PP versus  for different values of the apex angle, . The values 

of  > 45
o
 were found to be impractical for pumping, since the flexure stiffness of the cone’s 

surface considerably abates and, therefore its pumping ability deteriorates as well. For values  < 

45
o
, PP was found to be in the range of 1-2.  Thus the expected range of PP for a simple 

asymmetric angle-ply conical structure is 1-2. However the LV, which is roughly a near-conical 

asymmetric angle-ply structure, shows a PP of 3.3-4 [1, 2].  Consequently the effect of the 

simplest and most practical two-layer fiber orientation on the PP of our near-conical LV-like 

structure is studied. The fiber orientation in the top most (epicardium) and bottom most 

(endocardium) layers of the HVMB of goat’s heart is estimated via direct observation. The fiber 

orientation observed in the endocardium and epicardium layers of one sample of the HVMB is 

displayed in Figures 40 (A) and (B) respectively.  
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Figure 40 (A): Goat heart HVMB Endocardium: Two Main fiber directions (Sky blue and deep 

blue lines). The two regions in which these fiber orientations are observed, is separated by 

yellow line. The approximate LV band traced is shown using red line 

 

Figure 40 (B): Goat heart HVMB Epicardium: Two Main fiber directions (Green and red lines). 

The two regions in which these fiber orientations are observed, is separated by yellow line 

 

Multiple goat hearts were dissected, and the fiber orientations observed in the two-layers of 

HVMB were compared with literature, to decide the idealized fiber orientation. The idealized 

band and two-layer fiber orientation is displayed in Figure 41. 
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Figure 41: Idealized LV band trace with epicardial (hard lines) and endocardial (dashed lines) 

fiber lines. 

O 

Endocardial fibers 

Epicardial fibers 
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4.3 Construction of Two-layer Near-Conical LV-Like FMC Structure  

For both the experimental and finite element (FE) work, the construction of the two-layer near-

conical LV-like model is accomplished by rolling the flat LV band (including the fibers) into a 

cone. Analytically, a Matlab code is written to roll each point of the band edges (top and bottom 

as shown in Figure 36) and fibers into the proper location on the cone. Experimentally, the flat 

band is manually rolled into the near-conical LV-like structure.  

 

4.3.1 Experimental Construction 

The construction of the two-layer near-conical LV-like FMC structure is done in two phases. In 

the first phase, an open Teflon mold (with depth of 0.3 cm) is prepared in house in the shape of 

the idealized LV band. Shape Memory Alloy (SMA) wires (used as actuating fibers) from 

Dynalloy ([40], .015’ diameter, 5% maximum strain) are placed in the mold in two layers (Figure 

42), guided by screws. The first layer of SMA wires are placed as per the recorded epicardial 

fiber orientation, followed by the layup of second (top) layer of SMA wires representing the 

endocardial fiber orientation. A suitable gap is maintained between the two layers, adjusted by 

the screw grooves, to avoid any possible short circuiting. Polyurethane resin (PU) is poured into 

the mold and left to cure for 8-10 hours (Figure 43). Once the curing is over, the screws are 

removed and the PU/SMA LV band (Figure 44) is taken out of the mold.  
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 Figure 42: SMA wires placed in teflon mold                Figure 43: PU/SMA band in the mold 

 

                   

                         Figure 44: PU/SMA LV band           Figure 45: Near-conical LV like FMC model      

 

In the second phase, the PU/SMA LV band (Figure 44) is twisted and looped (Section 2.2) to 

obtain the near-conical LV-like structure (Figure 45). The base of the conical structure is 

immersed into a bath of polyurethane to form a polyurethane base. The apex of the conical 

structure is shoved with a small tube extended out from the apex (Figure 45). 

 

Screws 
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4.3.2 Analytical Construction 

As mentioned above, analytically, the idealized band is rolled into the near-conical shape using a 

Matlab code. The input to Matlab is a set of points on the LV band edges (Figure 41). The rolling 

of the flat band surface into a cone is performed using the analysis described in Appendix B. The 

Matlab codes used for generating both the plots are provided in Appendix C. Figure 46 shows 

the idealized LV band plotted in Matlab. Figure 47 shows the rolled near-conical LV structure 

plotted in Matlab.  

   
Figure 46: Idealized LV band trace plotted in Matlab     

 
Figure 47: LV band rolled in Matlab 
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The epicardial and endocardial fibers points are plotted on the idealized LV band trace using a 

Matlab code (provided in Appendix C). In Figure 48, the red and blue colored lines represent the 

endocardial and epicardial fibers respectively. The fibers are rolled on to the near-conical LV-

like structure using a Matlab code (Appendix C). The endocardial and epicardial fibers are 

located at 1/3
rd

 thickness and 2/3
rd

 thickness distance from the inner surface of the cone 

respectively. The near-conical LV-like structure with epicardial fibers (in blue color) and 

endocardial fibers (in red color) is presented in Figure 49. 

 

 
 

Figure 48: Idealized LV band with Epicardial (blue) and Endocardial (red) fibers plotted in 

Matlab 
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Figure 49: Near-conical LV-like structure with Epicardial (blue) and Endocardial (red) fibers 

rolled in Matlab 

 

A closer look at the generated near-conical two-layer LV-like structure is presented in figure 50. 

It is noticed that there are two unique sides of the structure:  

1. A septal or the Ascending/Descending side, which is made of two overlapping layers. 

The fiber orientations of the two layers are different. The two layers constitute an angle-

ply laminate. 

2. Non-septal side, which is constituted of three layers namely the ascending, descending 

and circumferential fiber orientation, again forming an angle-ply laminate.  
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Figure 50: A closer look into the near-conical LV-like structure with Epicardial (blue) and 

Endocardial (red) fiber layers 

 

Moreover the fiber angles measured in the two unique sides of the structure are: 

1. Septal side: Approximately 60
o
 between Ascending and Descending fiber groups. 

2. Non-septal side: Both the Ascending and Descending fibers approximately make opposite 

60
o
 angles with the circumferential fibers. This observation has been previously reported 

in literature by Streeter et al, and has been mentioned in the literature section 2.1. 

 

A Matlab code is used to write the rolled band and fiber points into a file (code provided in 

Appendix C). These points are used subsequently for modeling of the near-conical LV-like 

structure and the fibers in the epicardial and endocardial layers, in ANSYS. 

Septal Side 

Non-Septal Side 

Non-Septal Side 

Septal Side 
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5. Experimental and Analytical Work 

In the experimental work, the experimental setup is prepared for computation of the PP of the 

near-conical two-layer LV-like structure. The analytical work section briefly presents the steps 

of modeling of the near-conical two-layer LV-like model in ANSYS and also the various 

modeling steps necessary (i.e. Creation of the inner volume, contact relations etc.) for 

computation of the PP.  

 

5.1 Experimental Work 

The SMA wires of the near–conical LV-like structure are connected to a power supply (GW 

Instek GPS-3303 Dual Output Linear DC Power Supply, 3 Channels, 3 Output Amps, 30 Output 

Volts, 195 Output Watts), and a plastic measuring tube is connected to the tube fixed to the apex 

of the conical structure, as shown in Figure 51. The structure is filled with water till the brim of 

the apex opening, and the SMA fibers are charged. As the fibers are activated and heated up, 

they contract, causing the structure to deform and to partially collapse inward, pumping out 

water up the extended measuring tube.  

 

To estimate the PP of the near-conical LV-like FMC structure, the SMA is charged with the 

maximum allowed power, which generates the highest strain (L//Lo) in the SMA without 

destroying the shape memory of the wires. The volume of the displaced water (V) in the 

extended tube is measured, and the PP of the near-conical LV-like FMC structure is computed. 
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Figure 51: Experimental set-up 

 

5.2 Analytical Work in ANSYS 

The modeling of the near-conical LV-like FMC structure in ANSYS involves the following main 

steps: 

1. The key-points are imported from Matlab, which represent the rolled LV band points for 

each of the inner and outer surfaces, and plotted in ANSYS workspace. In Figure 52, the 

red colored 1 and 25 points are the starting and end points respectively of the top basal 

outer surface of the cone. Similarly the green colored 1 and 25 points are the starting and 

end points respectively of the top basal inner surface of the cone. 

 

Base 

LV-like 

structure 

Measuring 

Tube 

Power Supply 

SMA Wire ends 

Small tube 
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Figure 52: Rolled LV band key points plotted in ANSYS 

2. The various key-points in Figure 52 are connected using splines and lines as shown in 

Figure 53 in different colors.  

 
Figure 53: Rolled LV band lines plotted in ANSYS 
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3. The areas are created from lines in Figure 53. First, the top basal area (Red) in Figure 54 

is created by using the two long basal splines (pink and purple) and two short ending 

lines (Yellow and Purple) in Figure 53. Secondly, the blue and purple rectangular areas 

are created (Figure 54). Thirdly, the green apical area is created by using the two long 

apical splines (green and pink) and the two small lines (blue and grey) in Figure 53. Next, 

the outer main surface (purple) is created by using the outer basal spline (pink), red and 

blue straight lines and outer apical spline (green) in Figure 53. The inner main surface is 

generated similarly. A total of six surfaces created can be visualized using Figure 54.  

                       

Figure 54: Two views of the rolled LV band areas plotted in ANSYS 

4. The main volume (Figure 55) is created from areas in Figure 54. However due to 

difficulties (Appendix F) faced in subsequent meshing of the main volume, the main 

volume was subdivided into 24 sub-volumes as shown in Figure 56. 
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                   Figure 55: LV main volume                    Figure 56: Subdivided LV main volume  

5. The key-points representing the rolled fibers of the Epicardium (at 2/3
rd

 thickness) and 

Endocardium (at 1/3
rd

 thickness) are imported from Matlab and plotted in ANSYS. Each 

of the key-points are connected through B-splines to generate fiber lines. A sample of 

fiber line plotted in ANSYS is shown in Figure 57.  

             
     Figure 57: Single fiber spline plot                    Figure 58: Area created normal to a fiber line  

A 
A 
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6. The fiber volumes with square cross-section are created by sweeping a square area (0.06 

cm*0.06 cm) along every fiber line (Figure 58). Each of the fiber volumes are then 

divided into at least 3 sub volumes, to avoid meshing difficulties due to volume twisting 

(Appendix F). The square cross-section is adopted to limit the number of elements 

generated while meshing (mapped) (Figure 59).  

                                                  
Figure 59: Number of elements generated using mapped meshing in case of a square cross-

section is much less than in case of circular cross-section  

7. The fiber volumes are overlapped with the main LV volume using ‘OVERLAP’ 

operation. Figure 60 shows the fibers (blue) inside one main sub volume. Figure 61 

shows the complex volume of a main sub volume, due to overlapping operation of the 

sub volume with fibers. 

                                                                              
 Figure 60: Fibers in a main sub volume       Figure 61: A main sub volume with embedded fibers 
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8. The common surface shared by the main sub volumes in blue and red colors in Figure 62, 

are bonded using contact–target pair elements as shown in Figure 63.  

 

                                                     
 

Figure 62: Volumes sharing common surface    Figure 63: Contact-target pairing in main volume 

                    in LV main volume        

9. An inner volume occupying the empty space inside the main LV volume is created to 

simulate the water (in experiments) in ANSYS. Consequently this inner volume will be 

used to quantify the percentage change in the volume of the empty space (∆V/V %) 

inside the main volume, while the pumping is simulated. The complex process involved 

in the creation of this inner volume is discussed in Appendix D. Figures 64 (A, B) shows 

the different parts (in colors) of the inner volume. 
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                                     (A)                                                                          (B) 

Figure 64: (A) and (B) are two views of the different parts of the inner volume (in different 

colours), enclosed within the LV main volume (transparent). 

10. The material properties for the Polyurethane (PU) LV main volume, SMA fibers and 

inner volume (core) are listed in Table 4. The element type selected is Solid 186 for the 

main volume, fibers and the inner volume.  

Material Property Value Unit 

SMA 

Modulus of Elasticity 133 GPA 

Poisson’s ratio 0.33  

Thermal Expansion 

coefficient 

10
-4 

K
-1

 

PU Modulus of Elasticity 20 MPA 

Poisson’s ratio 0.48  

Core Modulus of Elasticity 1 KPA 

Poisson’s ratio 0  

 

Table 4: Material properties for ANSYS 
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11. The finite element mesh is generated in three phases. First, the fibers are meshed using 

hex-mapped meshing technique and appropriate sizing controls. The mesh of the fibers is 

shown in Figure 65 (A), with epicardial fibers in yellow color and endocardial fibers in 

red color. Secondly, the Main LV sub volumes are meshed using tet-free meshing 

technique and with smart sizing ‘5’. The LV main volume mesh is shown in Figure 65 

(B). 

 

          
                            (A)                                                                            (B) 

Figure 65: (A) Epicardial (yellow) and Endocardial (red) fiber mesh. (B) Mesh of the LV main 

volume 
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 Thirdly, the inner volume is meshed using tet-free meshing technique and with smart 

sizing ‘Off’. The inner volume mesh is shown in Figures 65 (C, D). The main purpose of 

Figure 65 (D) is to show how well the inner volume mesh fits inside the main volume 

mesh (transparent). Some major difficulties faced while meshing are discussed in 

Appendix F. 

                            
 

                Figure 65 (C): Inner volume mesh             Figure 65 (D): Inner volume mesh inside  

                                                                                          main volume mesh (transparent) 

12. The various parts of the inner volume are bonded together using contact-pairs. Also the 

inner volume is bonded with the main volume at the common surface using contact-pairs. 

Three contact-pair samples are shown in Figure 66.  



www.manaraa.com

55 
 

                                      
 

Figure 66: Contact-pairs involved in bonding of the inner volume parts with the main volume 

13. Boundary conditions: The top basal surface of the near-conical LV-like model in ANSYS 

is constrained in all degrees of freedom (DOF’s). All the fiber elements are thermally 

charged (indirectly using temperature loading) with 2% thermal strain.  

 

14. A large deformation analysis is invoked and a non-linear solution is computed.  

 

6. Results and Discussions 

The pumping potential, defined as “the relative volume reduction engendered by an input stroke” 

[11, 12], of the simple and practical two-layer LV-like FMC structure is evaluated both 

experimentally and analytically. 
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6.1 Experimental Results 

Experimentally, to estimate the PP of the near-conical LV-like FMC structure, the SMA is 

charged with the maximum allowed power, which generates the highest strain (L//Lo) in the 

SMA without destroying the shape memory of the wires. The volume of the displaced water 

(V) in the extended tube is measured, and the PP of the near-conical LV-like FMC structure is 

computed using the following equation: 

 

                                                                

  

  
 

  

  
 
                             (Equation 4) 

 

Three experiments with five trials each were conducted. The results are summarized in Table 5. 

From the results, the average experimental PP is in the range of 2.73-2.95 approximately. The 

first trial (marked in red) is neglected in each experiment, because the SMA wire contracts under 

the maximum strain (approximately 4%) and undergoes a small amount of permanent hysteresis 

in the first trial. In the subsequent trials, the maximum SMA strain becomes consistent 

(approximately 3.6%). 

 

Experimental Results 
 Parameter V(mL) Vo(mL) L/Lo(%) PP 
Experiment 1 Trial 1 7.5 61 4 3.07 

 Trial 2 6.5 61 3.6 2.95 

 Trial 3 6.5 61 3.6 2.95 

 Trial 4 6.5 61 3.6 2.95 

 Trial 5 6.5 61 3.6 2.95 

Experiment 2 Trial 1 8 68 4 2.94 

 Trial 2 7 68 3.6 2.85 

 Trial 3 7 68 3.6 2.85 
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 Trial 4 7 68 3.6 2.85 

 Trial 5 7 68 3.6 2.85 

Experiment 3 Trial 1 7.5 66 4 2.84 

 Trial 2 6.5 66 3.6 2.73 

 Trial 3 6.5 66 3.6 2.73 

 Trial 4 6.5 66 3.6 2.73 

 Trial 5 6.5 66 3.6 2.73 

Table 5: Experimental Pumping Potential (PP) results 

 

6.2 Analytical Results 

The deformation of the inner volume (V) in the near-conical LV-like ANSYS model, under a 

thermal strain (L//Lo) in all the embedded fiber volumes, is calculated (Appendix E). The 

pumping potential (PP) is computed using the following equation: 

 

                                                                

  

  
 

  

  
 

                       (Equation 4) 

 

The results are summarized in Table 6. The un-deformed and deformed mesh of the main LV 

volume, fibers and inner volume are shown in Figures 67, 68 and 69 respectively. 

 

Analytical Results 

V(mL) Vo(mL) L/Lo(%) PP 
4.6453 92.0594 2 2.5 

 

Table 6: Analytical Pumping Potential (PP) results 
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Figure 67: Main volume and inner volume mesh before (left) and after (right) deformation 

 

Figure 68: Fiber mesh deformed shape (yellow) and un-deformed edges (dashed black lines)  

Twist 
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Figure 69: Inner volume mesh before (left) and after (right) deformation 

 

Additionally, in the ANSYS animation, a clockwise ventricular apical twist [23] or wringing 

effect was observed clearly (also observed in Figure 67). Another effect observed was the 

thickening of the inner walls [41] (Appendix G) of the main volume. These effects have been 

previously pointed out in the literature and are believed to enhance the pumping efficiency of the 

LV.  

 

7. Conclusions 

The experimental and analytical investigation of the near-conical two-layer LV-like FMC 

structure yielded an average PP of 2.8 and 2.5 respectively. Though the PP is less than that of the 

heart’s PP (3.3-4), compared to our previously investigated simple single-layer Left-Ventricle-
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like FMC model, the PP has improved significantly, indicating that the fiber orientation in the 

heart plays an important role in defining its PP.  

 

The difference between the PP of our near-conical two-layer LV-like FMC structure and the 

heart can be mainly attributed to the following reasons: 

1. Idealized fiber orientation: A more accurate fiber orientation with a higher number of 

fibers should significantly improve the PP. 

2. The material properties of the FMC (PU/SMA) adopted in our model are completely 

different from the biological properties of the heart's muscle, which may have a 

considerable effect on the PP, as previously observed in literature [43]. 

3. The boundary conditions are different. In our near-conical LV-like model, both in 

experiments and ANSYS, the base is fixed and the outer surface is free. This is different 

from the heart (Appendix H), in which, various structures such as the basal skeleton (no 

rotation [1]), apex (no translation along the long axis [1]), the pericardial sac (a conical 

sac of fibrous tissue surrounding the heart, which is radially stiff but circumferentially 

free [44]), and the atrial and ventricular valves constrain the myocardial motions [44, 45]. 

4. The strain application scheme on the fibers (single step), in our experiments and analysis, 

is different than that in the heart (multi step), which significantly affects the overall PP 

[1]. 
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9. Appendices 

Appendix A: Idealizing of LV band  

The crude LV band trace is idealized by trimming the trace (along black dashed line in Figure 

70) into a circular sector with two radii. The starting (Red) and ending (Blue) lines of the band 

are also decided. The aim is to have the starting and ending edges as straight and simple as 

possible, which will subsequently simplify the modeling of the near-conical LV-like FMC 

structure. 

 

Figure 70: LV paper band trace. Red line: Starting line, Blue line: Ending line of the idealized 

band. Ω is the total band angle and θ is the angle subtended by the band for one conic rotation 

 

Additionally, the radius and band spin for the resulting near-conical structure is determined, 

which will be subsequently used as inputs to the Matlab codes for rolling the band and fibers: 

Angle subtended by the conic section for one rotation of cone: θ  

L 

θ
 

Ω
 
Ω
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Total angle subtended by the Band: Ω. 

Band Spin= Ω / θ 

Radius of cone (r): Arc length of band constituting one complete conical rotation=Circumference 

of the cone 

    
 

   
     

 

Appendix B: Rolling a plane surface into a conical surface 

The rolling of the flat band surface into a cone with a known apex angle and the associated fibers 

in the two layers across the thickness of the cone is performed using the analysis described below 

[9].  

 

As shown in Figure 71, we place the flat surface on the YZ plane. The target cone is placed such 

that the Z-axis coincides with one of the cone’s side (slant) line, and that the axis of the cone, 

defined by the unit vector w, lies in the XZ plane. 

 

Let us assume a generic point on the flat plane, A1, which is to be moved to the corresponding 

point A3 on the surface of the target cone. Also, let us denote R1 and R3 as the vector 

representations of points A1 and A3, respectively. The transformation of point A1 to A3 is 

accomplished via two consecutives rotations of the vector R1. The first rotation, which renders 

R2, is achieved by rotating the vector R1 about the X-axis with an angle . In the second rotation, 

the vector R2 is rotated about the unit vector of the axis of the cone w by an angle, , such that 

R = r , where R is the magnitude of the vector Ri (i = 1, 2 or 3) and r is the radius of the cone 
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at the intermediate point A2 (Figure 71). Note that r = R sin α, where α is the apex angle of the 

cone.  

 

It can be shown that the transformation matrix T, which rotates R2 about w producing R3, is 

given by 

R3 = T . R2,  

where  T(w, ) =  

 























cvcwwswvcwwswvcww

swvcwwcvcwwswvcww

swvcwwswvcwwcvcww

zzxzyyzx

xyzyyzyx

yxzzxyxx

 

 

with c = cos, s = sin, and vc = 1 - cos. The angle cosines wx, wy and wz are of the unit vectors 

w; that is, w = (wx, wy,  wz)
T

. 

 
   

Figure 71: Schematic illustration of the rolling process of a flat plane into a conical surface. [9] 
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It should be also mentioned that r, while generating the near-cone LV-like structure, is increased 

in proportion to , such that the incremental increase in r every complete revolution ( = 2) 

equals to the thickness of the flat plate. This way, the excess portion of the flat plane with  > 2  

wraps perfectly well over the previously rolled portions with  < 2; that is, without any gaps 

between the two mating surfaces. 

 

Appendix C: Matlab codes for LV band, fibers and LV-like model generation 

1. LV band plotting 

--------------------------------------------------------------------------------------------------------------------- 
% Flat Band 

% The flat portion in the y-z plane 

% n ... number of points along the length 

% m ... number of points along the width 

% Factor ... rate of increasing the spin angle 

% rr ... Radius of the cone's base (Any one) 

% RR ... Corresponding Radius of the flat band 

% ang_rev ... required looping angle 

% Rr ... is RR/rr 

ang_rev=1.846; Total Spin Angle 

conv   = pi/180; 

thickness=0.3; Band Thickness 

%.............................................................. 

%BAND LAYUP 

% R is in cm 

R = [12.1 12.1; 13.15 10; 13.85 8.6; 13.85 6.1; 14 5.3; 13.95 

4.8; 12.65 4.5;12.85 4.25; 13.1 4.1; 12.65 3.9; 12 3.65; 12.45 

3.45; 12.35 3.35; 12.9 3.25; 13.4 3.1; 13.9 3; 14 3.1; 14 3.15; 

13.9 3.2; 13.9 3.35; 13.7 3.75; 13.45 4.5; 13.4 4.9;12.9 7.7; 12 

10.55]; Polar end coordinates of band points at every 5 degrees  

ang   = [0:5:120]; Measurement at every 5 degrees, Band=120
o
 

[n m] = size(R); 

mxang = max(ang); 

psi   = conv*[ang' ang']; 

Rr    = ang_rev*360/mxang; 

z     = R.*cos(psi); 

y     = R.*sin(psi); 

% Plot original Band after adjustment 

tmp(:,1) = z(:,1); 



www.manaraa.com

70 
 

tmp(:,2) = z(n:-1:1,2); 

x_band     = tmp(:); 

tmp(:,1) = y(:,1); 

tmp(:,2) = y(n:-1:1,2); 

y_band   = tmp(:); 

% Close the plot 

x_band(2*n+1) = x_band(1); Last point plot=starting point 

y_band(2*n+1) = y_band(1); 

%subplot(1,2,1); 

plot(-x_band,y_band,'k','LineWidth',2) 

axis equal 

------------------------------------------------------------------------------------------------------------------------------------------ 

2. LV band rolling 

--------------------------------------------------------------------------------------------------------------------- 
% Roll into cone 

% Needed spin angle, rr*spin = RR*psi  

% For pure cone: RR = 1, rr = 0.25 

% Unit vector of the axis of the cone w = [wx wy wz] 

psix = atan(1/Rr); 

wy   = 0; 

wz   =   cos(psix); 

wx   =   sin(psix); 

% The Transformation matrix about cones axis Rw 

% Then rotate just the edge with the appropriate spin 

% Notice that the edge is local z coordinates 

% Define an edge point (with x=y=0) 

% kk is for the number of surfaces 

%    includes the midsurfaces of the fibers 

********************** 

for kk = 1:3 Thickness divided into three surfaces 

for jj = 1:m 

for ii = 1:n 

    Rij  = R(ii,jj); 

    psij = psi(ii,jj); 

    spin = psij*Rr; 

    % Rotational matrix  

    % To rotate a vector, passing by the origin, about the spin 

axis 

    Ctt = cos(-spin); 

    Stt = sin(-spin); 

    Vtt = 1 - Ctt;  

    Vt  = Vtt; 

    Ct  =  Ctt; 

    St  = Stt; 

    Rw  = [wx*wx*Vt+Ct    wy*wx*Vt-wz*St   wz*wx*Vt+wy*St; 

           wx*wy*Vt+wz*St wy*wy*Vt+Ct      wz*wy*Vt-wx*St; 
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           wx*wz*Vt-wy*St wy*wz*Vt+wx*St   wz*wz*Vt+Ct]; 

    % Consider the gradual change in thickness 

    % Just drop the reference axis and elongate 

    % xR  = psij*thickness*((kk-1)+1/mxangr); 

    % zR  = Rij*(1+thickness*((kk-1)+1/sin(psix))); 

    xR  = thickness*((kk-1)/2+spin/(2*pi)); 

    dzR = xR*tan(psix); 

    zR  = Rij+dzR; 

    pm = [-xR 0 zR]; 

    pc(ii,jj,:) = Rw*pm';   

end 

end 

xx = pc(:,:,1); 

yy = pc(:,:,2); 

zz = pc(:,:,3); 

%subplot(1,2,2); 

% Notice that (xxk,yyk,zzk) are for ANSYS plotting; 

if kk == 1  

    surf(xx,yy,zz,'facecolor','green'); 

    xx1 = xx; 

    yy1 = yy; 

    zz1 = zz; 

    hold on 

% elseif kk == 2 Middle surface not plotted 

%     surf(xx,yy,zz,'facecolor','yellow'); 

%     xx2 = xx; 

%     yy2 = yy; 

%     zz2 = zz; 

elseif kk == 3  

    surf(xx,yy,zz,'facecolor','yellow') 

    xx3 = xx; 

    yy3 = yy; 

    zz3 = zz; 

end 

axis square 

alpha(0.5)  % For transperancy <0:1> 

end 

------------------------------------------------------------------------------------------------------------------------------------------ 

3. Fiber plotting and rolling 
------------------------------------------------------------------------------------------------------------------------------------------ 
%PLOTTING FIBERS  

%---------------------------------------------------------------

----------- 

% Record and plot fibers 

%EPICARDIUM.....................................................

..................... 
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% Data_fiber: R1 R2 Th1 Th2 N_points location_across_thikness 

%n_layers = 1; 

n_fibers = 14; Number of fibers in the epicardium 

hh = thickness; 

Rt = [3.05 12.85 74 115 10; ... |(115-74)/5|+1=Number of fiber                                

3.8 13.35 47 109.5 14; ...      points=10 

5.15 13.45 23 103.5 18; ... 

6.5 13.75 18.5 98.5 17;... 

7.7 13.8 23 92.5 15;... 

8.95 13.95 25 86.5 14;... 

10.15 14 27 78.5 12;... 

11.4 12.35 28 58 7;... 

12.5 12.65 29.5 45 5;... 

13.85 12.5 23 29.5 3;... 

13.9 11.7 18.5 28.5 3;... 

13.85 10.85 15 28 4;... 

13.8 9.9 10.5 27 5;... 

12.85 7.85 3.5 23 5;... 

]; 

  

%hh = thickness/(n_layers+1); 

% Planar coordinates of fibers 

%  with intersection with the longitudinal lines 

%  m1 = (y2-y1)/(z2-z1) = (y-y1)/(z-z1) 

% nj ... number of points/fiber, multiple of the longitudinal 

span 

% 5  ... increment between two latitudes (degree) 

mt = 1; 

dT = 5/mt; 

R1 = Rt(:,1); R2 = Rt(:,2); 

T1 = Rt(:,3); T2 = Rt(:,4); 

nj = Rt(:,5); 

z1 = R1.*cos(T1.*conv); 

y1 = R1.*sin(T1.*conv); 

z2 = R2.*cos(T2.*conv); 

y2 = R2.*sin(T2.*conv); 

mf = (y2-y1)./(z2-z1); 

% Find intersecion & Rotate fibers 

% Equation of longitudinal: y = m2*x  

hl = hh; 

for ii = 1:n_fibers 

nji = nj(ii); 

mfi = mf(ii); 

T1i = T1(ii); 

T2i = T2(ii); 

z1i = z1(ii); z2i = z2(ii); 

y1i = y1(ii); y2i = y2(ii); 
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m1  = mfi; 

num = - m1*z1i + y1i; 

for jj = 1:nji 

    if jj == nji 

        Tij = T2i; 

    else 

        Tij  = T1i + dT*(jj-1); 

    end 

    psij = Tij*conv; 

    if psi/conv == 90 

    zij = 0; 

    else 

    m2   = tan(psij); 

    dum  = m2 - m1; 

    zij = num/dum; 

    end 

    yij     = m2*zij; 

    Rij     = sqrt(yij^2+zij^2); 

    xfj(jj) = - zij; 

    yfj(jj) = + yij; 

    Rf(jj)  = Rij; 

    psf(jj) = psij; 

    spin    = psij*Rr; 

    % Rotational matrix  

    % To rotate a vector, passing by the origin, about the spin 

axis 

    Ctt = cos(-spin); 

    Stt = sin(-spin); 

    Vtt = 1 - Ctt;  

    Vt  = Vtt; 

    Ct  =  Ctt; 

    St  = Stt; 

    Rw  = [wx*wx*Vt+Ct    wy*wx*Vt-wz*St   wz*wx*Vt+wy*St; 

           wx*wy*Vt+wz*St wy*wy*Vt+Ct      wz*wy*Vt-wx*St; 

           wx*wz*Vt-wy*St wy*wz*Vt+wx*St   wz*wz*Vt+Ct]; 

    % Consider the gradual change in thickness 

    % Just drop the reference axis and elongate 

    % xR  = psij*thickness*((kk-1)+1/mxangr); 

    % zR  = Rij*(1+thickness*((kk-1)+1/sin(psix))); 

    xR  = thickness*((2/3)+spin/(2*pi)); Gradual spin 

    dzR = xR*tan(psix); 

    zR  = Rij+dzR; 

    pm = [-xR 0 zR]; 

    pf(jj,:) = Rw*pm';   

end 

% Plot fibers on Heart 

subplot(1,4,3) 
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xfb = pf(1:nji,1); 

yfb = pf(1:nji,2); 

zfb = pf(1:nji,3); 

plot3(xfb,yfb,zfb) 

For checking 

if ii == 3 

xf_check = xfb; 

yf_check = yfb; 

zf_check = zfb; 

end 

% Plot fibers on Band 

subplot(1,4,4) 

xfk = xfj(1:nji); 

yfk = yfj(1:nji); 

plot(xfk,yfk) 

end 

 

%ENDOCARDIUM 

%---------------------------------------------------------------

----------- 

% Record and plot fibers 

%...............................................................

........... 

% Data_fiber: R1 R2 Th1 Th2 N_points location_across_thikness 

%n_layers = 1; 

n_fibers = 14; 

hh = 0; 

Rt = [13.95 13.15 80.5 112.5 8; ... 

13.55 12.2 72 120 11; ...    

12.95 10.85 66 120 12; ... 

12.35 9.45 61 117.5 13;... 

12.4 8.1 53 116 14;... 

11.45 6.75 49 114 14;... 

9.65 5.45 47 112.5 15;... 

7.95 4.05 44.5 103.5 13;... 

6.25 3.05 40 79.5 9;... 

12.7 6 2.5 39.5 8;... 

13.5 7.45 7.5 43.5 9;... 

13.9 8.5 12.5 45 8;... 

13.95 10.05 20.5 47.5 7;... 

12.85 11.45 35.5 49 4;... 

]; 

 

Rest all code remains the same as in case of Epicardium, except 

the following step: Because the endocardial fibers are plotted 

at 1/3
rd
 of the thickness distance from the band inner surface.  
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    xR  = hl+thickness*((1/3)+spin/(2*pi)); 

--------------------------------------------------------------------------------------------------------------------- 

4. Writing rolled band and fiber points into files for ANSYS plotting  
------------------------------------------------------------------------------------------------------------------------------------------ 
% ---For ANSYS plotting--- 

% Inner-surface of Band 

npt = [1:n];  

Tmp = [npt' xx1(:,1) yy1(:,1) zz1(:,1)]; 

MM1 = Tmp'; 

fid = fopen('Surf1_Edge1','w'); 

fprintf(fid,'%8.0f  %14.4f  %14.4f %14.4f\n', MM1); 

fclose(fid); 

Tmp = [npt' xx1(:,2) yy1(:,2) zz1(:,2)]; 

MM1 = Tmp'; 

fid = fopen('Surf1_Edge2','w'); 

fprintf(fid,'%8.0f  %14.4f  %14.4f %14.4f\n', MM1); 

fclose(fid); 

% Outer-surface of Band 

npt = [1:n];  

Tmp = [npt' xx3(:,1) yy3(:,1) zz3(:,1)]; 

MM1 = Tmp'; 

fid = fopen('Surf2_Edge1','w'); 

fprintf(fid,'%8.0f  %14.4f  %14.4f %14.4f\n', MM1); 

fclose(fid); 

Tmp = [npt' xx3(:,2) yy3(:,2) zz3(:,2)]; 

MM1 = Tmp'; 

fid = fopen('Surf2_Edge2','w'); 

fprintf(fid,'%8.0f  %14.4f  %14.4f %14.4f\n', MM1); 

fclose(fid); 

%ANSYS band Plotting done------------------------------- 

%ANSYS Fiber Plotting Epicardium------- 

npf = [1:nji]; 

Tmf0 = [npf' xfb yfb zfb]; 

if ii == 1  

    Tmf = Tmf0; 

else 

    Tmf = [Tmf; Tmf0]; 

end 

  

% np_total = sum(nj); 

% nptc     = [1:np_total]; 

% Tmf(:,1) = nptc'; 

MM2 = Tmf'; 

fid = fopen('epifibers','w'); 

fprintf(fid,'%8.0f  %14.4f  %14.4f %14.4f\n', MM2); 

fclose(fid); 
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end 

--------------------------------------------------------------------------------------------------------------------- 

Similarly the endocardium fiber points are also written in a separate file. 

 

 

Appendix D: Inner volume key-point plotting in Matlab 

To create the inner volume key points, the original band is modified as explained below. These 

modified points along with the original key points were connected accordingly to create the inner 

volume parts using bottoms up approach: 

1. The original 25 band points (in polar coordinate system), which were rolled to obtain the 

LV main volume key points are as follows: 

R = [12.1 12.1; 13.15 10; 13.85 8.6; 13.85 6.1; 14 5.3; 

13.95 4.8; 12.65 4.5; 12.85 4.25; 13.1 4.1; 12.65 3.9; 12 

3.65; 12.45 3.45; 12.35 3.35; 12.9 3.25; 13.4 3.1; 13.9 3; 

14 3.1; 14 3.15; 13.9 3.2; 13.9 3.35; 13.7 3.75; 13.45 4.5; 

13.4 4.9; 12.9 7.7; 12 10.55]; 

 

The LV like model in ANSYS and the actual rolled band is revisited in Figure 72 and 73 

respectively. In Figure 72, the rolled band inner surface starts at inner point 1 and ends at 

outer point 25. If point 1-11 is changed to points 14-24 respectively, rest all points 

remaining the same, the base becomes flat with the inner and outer top edges parallel to 

each other. This is done in step 2. 
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Figure 72: LV volume with inner sub-volumes     Figure 73: LV near-conical structure revisited 

2. New rolled band points are plotted by feeding the following input to Matlab: 

R = [12.9 3.25; 13.4 3.1; 13.9 3; 14 3.1; 14 3.15; 13.9 

3.2; 13.9 3.35; 13.7 3.75; 13.45 4.5; 13.4 4.9; 12.9 7.7; 

12.45 3.45; 12.35 3.35; 12.9 3.25; 13.4 3.1; 13.9 3; 14 

3.1; 14 3.15; 13.9 3.2; 13.9 3.35; 13.7 3.75; 13.45 4.5; 

13.4 4.9; 12.9 7.7; 12 10.55]; 

  

The points in red color are the changed input points. The resulting rolled band is 

presented in Figure 74. 

3. To make the apex flat with the inner and outer bottom edges parallel to each other, few 

input points (in red) are changed as follows:  

R = [12.9 3.25; 13.4 3.1; 13.9 3; 14 3.1; 14 3.15; 13.9 

3.2; 13.9 3.35; 13.7 3.75; 13.1 4.1; 12.65 3.9; 12 3.65; 

12.45 3.45; 12.35 3.35; 12.9 3.25; 13.4 3.1;13.9 3; 14 3.1; 

14 3.15; 13.9 3.2; 13.9 3.35; 13.7 3.75; 13.45 4.5; 13.4 

4.9;12.9 7.7; 12 10.55]; 
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 Figure 74: Flat base of near-conical       Figure 75: Flat apex of near-conical LV-like model  

                 LV-like model  

The resulting rolled band apex is shown Figure 75. The new rolled band points for the base and 

apex are plotted in ANSYS and connected with the old LV main volume key points using 

splines/lines. The lines are subsequently converted into areas and areas into various parts of the 

inner volume. 

 

Appendix E: ANSYS GUI commands 

1. Creating key points: 

PreprocessorModelingCreateKey pointsIn active CS(X, Y, Z) key point coordinates 

2. Creating lines from key points: 

PreprocessorModelingCreateLinesSplinesThrough Key points Select key points 

3. Creating areas from lines: 

PreprocessorModelingCreateAreasArbitraryBy lines Areas made using 4 lines 
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4. Creating volumes from areas: 

PreprocessorModelingCreateVolumesArbitraryBy Areas Volume made using 6 

surfaces 

5. Main volume meshing: 

1. PreprocessorElement TypeAdd/Edit/DeleteAddSolid 186 

2. PreprocessorMaterial PropsMaterial ModelsAddStructuralLinearElastic 

IsotropicEx=2000, Prxy=.48 

3. PreprocessorMeshingMesh ToolSelect Tet, FreeMeshSelect volume 

6. Creating fiber volumes from splines: 

1. Defining a coordinate system normal to the spline (at red star location A) using the GUI 

command: Work plane Align WP with Plane normal to linePick the fiber 

splineRatio along line=0 

2. Creating an area perpendicular to the spline at point A, using the GUI command: 

PreprocessorModelingCreateAreasRectangleBy Centr & CornrSelect point 

A (It should show the location as 0,0)Width=0.06, Height=0.06OK 

3. Sweeping the area along the spline to create the fiber volume, using the GUI command: 

PreprocessorModelingOperateExtrudeAreasAlong LinesSelect the area 

created in step 2OKSelect the splineOK. 

7. Fiber volume meshing: 

PreprocessorMeshingMesh ToolSize ControlsLinesSetPick the 4 lines forming the 

cross-sectional areaOKNumber of Element div=1OK 

Select Hex, MappedMeshSelect fiber volumes 

8. Overlap operation: 
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PreprocessorModelingOperateBooleansOverlapVolumesPick two volumes 

9. Contact pairing: 

The contact pairings are created in ANSYS using the Contact manager (Figure 76) which can be 

found under: PreprocessorModelingCreateContact Pairs. The contact wizard button 

(marked in red) in the contact manager is used to create a new contact pair. In the contact wizard 

page 1 (Figure 76), ‘Areas’ is selected under the target surface and ‘Flexible’ is selected under 

the Target type. ‘Pick target’ button is clicked to pick a target. The target is usually the concave 

surface in the contact-pair as per the rule of thumb. In the contact wizard page 2 (Figure 76), 

‘Areas’ is selected under the Contact surface and ‘Surface-to-Surface’ is selected under the 

Contact element type. ‘Pick contact’ button is clicked to pick a contact. The contact is usually the 

convex surface in the contact-pair as per the rule of thumb.  

 
 

             
 

Figure 76: Contact wizard steps for generating contact pairs 
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In the final page of contact wizard (Figure 77), the Include initial penetration option is checked 

‘OFF’ and under Optional settingBasicBehavior of contact surfaceBonded (Always) is 

selected. 

 
Figure 77: Contact wizard important optional settings 

10. Calculation of volume of geometry before/after deformation in ANSYS 

Initial volume: SelectEntitiesElementsBy AttributesMaterial number=3 

ListPicked EntitiesQuery Item=Volume, On EntitiesElementsPick All 

The sum of all element volumes of the particular material type is displayed  

Final Volume: General PostprocessingElement TableDefine TableAddGeometry 

VolumeSum of Each ItemOK 

The sum of all deformed element volumes of the particular material type is displayed 

 

Appendix F: ANSYS modeling issues  

In our ANSYS modeling, various difficulties/problems were faced and subsequently solved, 

which are worth mentioning:  

1. LV main volume meshing issue: 
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While trying to mesh the LV main volume, due to its complex and un-friendly geometry, the 

following two errors were observed:  (Figure 78 A, B) 

      
                                                                           (A) 

 
(B) 

 

Figure 78: (A, B) ANSYS errors showing difficulty of meshing of LV main volume due to 

complexities in the geometry 
 

The main volume was subsequently divided into four volumes as shown in Figure 79 (A). 

However the issue with the four volume geometry was during fiber plotting in ANSYS, more 

than 4 endocardial (inner) fiber volumes came out (Figure 79 A) of the main volume cutting the 

main volume at sharp edges (marked in Figure 79 B), and causing mesh difficulties in both the 

main LV volume and the fiber volumes which came out. The cause of the issue was identified to 

be the small curvature of the four volumes and a relatively large curvature of the endocardial 

fiber volumes leading to the fibers coming out of the main volume rather than staying all way in 

at 1/3
rd

 of the thickness from the inner surface. 
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                            (A)                                                                           (B) 

Figure 79: (A) Main volume subdivided into four volumes. 4 fibers can be seen to come out of 

the main volume due to curvature issues. (B) Fibers cutting a main volume sub-volume at sharp 

edges, which may cause mesh difficulties/failure 

 

The issue was solved by dividing the main volume into the maximum possible number of 

volumes (24 in this case). This subdivided volume meshed well and also none of the endocardial 

fibers came out of the main volume. In fact all the endocardial fibers were observed to be at 1/3
rd

 

thick ness distance from the inner surface throughout. 

2. Fiber twisting and meshing issue: 

The fiber volumes created using extrude operation couldn’t be meshed (Error in figure 80) as it is 

twisted (encircled in red). To solve this issue, each fiber spline was divided into at least 3 short 

splines and then the normal area was extruded to obtain 3 volumes (Figure 81). 
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Figure 80: Mesh difficulty in a fiber due to volume twisting (marked in red)  

 

 
Figure 81: One fiber volume divided into 3 sub-volumes to avoid volume twisting and mesh 

difficulties 

3. Total number of elements generated beyond the permitted limit in ANSYS issue: 

In ANSYS, the limitation of the total number of elements is 256,000. As there are a huge number 

of elements involved in meshing of our entire model with fiber volumes, main volume and an 
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inner volume, one of the primary considerations while meshing was to reduce the number of 

elements as much as possible in every step. Thus the meshing of the fibers were controlled using 

mesh controls. Figure 82 shows the generation of 469 elements in a fiber using regular tet-free 

meshing. 

 
Figure 82: Large number of elements generated due to regular tet-free meshing of a fiber. 

To reduce the number of fiber elements drastically, hex-mapped meshing style was used along 

with appropriate size controls. Figure 83 shows the fiber in Figure 82 re-meshed using Hex-

Mapped mesh and size controls, generating only 45 elements. 

 

 
Figure 83: Small number of elements generated due to Hex-mapped meshing (using size 

controls) of the same fiber in Figure 82. 
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4. Issue with some fibers coming out of LV main volume: 

An issue observed during fiber plotting was that some of the fibers came out through the top and 

bottom surfaces of the main volume by a bit as shown in Figure 84 (marked in red). This is not 

desired, as ideally all the fibers should be embedded inside the LV main volume. To take care of 

this issue, all such fibers were identified and their ends were trimmed off by a bit to have a 

reasonable amount of gap between the starting/ending fiber points and the top/bottom surfaces of 

the LV main volume. One corrected fiber end with a reasonable gap is marked in Figure 84 in 

yellow. 

 
Figure 84: Small gap (marked in red) between a fiber top/bottom and the LV main volume 

top/bottom surfaces can cause mesh difficulties. A reasonable gap created by trimming of a fiber 

end is marked in yellow. 

 

Appendix G: LV wall thickening Effect 

In 1969, Mitchell et al [41] reported that the LV wall thickness increases from 20% in diastole 

(filling) to 80% in systole (emptying). Spotnitz et al [42] in 1976 conducted experiments with a 

dog’s heart to validate the LV wall thickness change, which was previously reported by Mitchell 

et al (Figure 85). During systole, the LV wall was observed to thicken radially outward, shorten 

along the apex-base direction, and also shorten circumferentially. Also an apical twist was 

Reasonable 

gap 
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observed. As a result, the left ventricular wall dimensions were concluded to vary in all 

directions. 

 

Figure 85: Changes in a dog’s LV dimensions, observed during Systole and Diastole phase. 

Reproduced from [35] 

 

Appendix H: Boundary conditions in the heart 

In the heart, the boundary conditions significantly affect the pumping action of the ventricles. 

The major constrained parts in the heart are namely the base, apex, ventricular valves and the 

pericardial sac [45]. Figure 86 shows the various boundary conditions adopted in the well-known 

Auckland heart model [45].  

 

Figure 86: Various boundary conditions adopted in Auckland heart model [45]. ‘λ’ refers to the 

radial direction and ‘μ’ refers to the trans mural direction in the spheroidal coordinate system 
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Base 
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